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A set of radiation modes developed in previous work (Chen and Ginsberg [1]) is further
applied to the study of interactions between a heavy acoustic loading and an elastic
structure. The coupling of the acoustic loading with the structure is carried out by using
the radiation modes to decouple surface quantities into modal components together with
a condensation of the structural equation onto the normal displacement of the wetted
surface. Transforming the equation variables into velocity modal co-ordinates yields the
equation for the submerged structure of which the unknown variable is the set of radiation
modal amplitudes. The formulation provides a direct connection of the system response
to the radiation modes, which characterizes acoustic behavior both at the surface and far
fields. The radiation modes are divided into strong radiators and weak radiators, based on
their magnitudes of the eigenvalues associated with the modal representation. Additionally,
the interaction mechanism of the modes having strong radiation with the modes having
weak radiation is presented in the formulation and demonstrated by numerical examples.
The radiation patterns due to strong radiation modes exhibit directional characteristics,
where the modal pressure distributions at the far field are confined to specific directions
in space. Numerical examples are provided by beginning with a submerged constant
thickness shell studied previously. The subsequent example is the shell attached with
concentrated masses at various locations in order to reflect the changing of surface acoustic
response and the far field response in terms of alterations to the structure.
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INTRODUCTION

The interaction of a heavy acoustic medium with submerged elastic structures has been
investigated extensively in recent decades. A conventional approach to describe the effect
of acoustic loadings for surface acoustic quantities is by boundary integral equations or
their alternative forms. Coupling the acoustic equation with the elastic structures yields
the dynamic response of the coupled system under mono-frequency external excitations.
This approach provides preliminary computational results, e.g., surface pressure, surface
normal velocity, and displacement fields of the structures. However, the approach provides
little information regarding acoustic radiation connected with the vibrational properties
of the structures.

Recently, modal representations were established to disclose the surface normal velocity
in connection with far field pressure. Borgiotti [2] and Photiadis [3] applied singular value
decomposition to radiation operators which related the surface normal velocity to far field
pressure to decouple the surface velocity into modal forms. Sarkissian [4] applied singular
value decomposition to a surface impedance to derive radiation modes where the
impedance is transformed to a symmetric matrix by multiplying a proper scaling shape
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factor. Cunefare [5] computed the radiated power in the far field from which the radiation
modes were derived. The corresponding eigenvalues are proportional to the radiation
efficiencies of the modes. Thus, the normal velocity on the surface can be factorized into
each individual modal component such that each mode possesses its own radiation
efficiency. Moreover, the velocity radiation modes can be essentially divided into either
strong radiators, which radiate acoustic energies to the far field, or weak radiators, which
respond primarily evanescent fields near the surface. This modal description has been
applied to near field acoustic holography [2–4], optimization acoustic design [5–7], and
noise control [8, 9]. The significant feature of such modal representations is parallel to
vibrational modes in the area of structural dynamics. Therefore, expanding the above
developments to include submerged elastic structures is significant to engineering
applications. However, the acoustic mode stated above originates from the radiated
acoustic power from vibrating surfaces as a function of surface velocity, bypassing the
surface interaction mechanism between surface pressure and normal velocity. Also, the
corresponding surface pressure of each modal velocity does not possess an orthogonal
property which subsequently leads to difficulty in decoupling the surface pressure.

Since the coupling of an acoustic medium with elastic structures occurs on the surface
in which both the pressure and velocity are generally involved in the formulation, a modal
description that holds for both surface quantities is essential for a modal-type formulation.
Such a requirement can be satisfied by using another form of modal representation, which
is termed as acoustic pressure and velocity radiation modes, as established by Chen and
Ginsberg [1]. The analysis, based on a perspective different from the previous ones, is
derived from a complex surface acoustic power. The analysis starts by identifying an
acoustic reciprocity for two various sets of surface pressures and normal velocities,
subsequently leading to symmetric coefficients for the complex surface acoustic power.
Two sets of symmetric eigenvalue problems arise when the complex surface power is
diagonalized based on the discretized variables either by surface pressure or normal
velocity. The eigensolutions of the two eigenvalue problems form a one-to-one
correspondence of the pressure radiation modes and velocity radiation modes. The
eigenvalues derived from each eigenvalue problem are shown to be identical and are
identified as acoustic modal radiated powers for the modes whose magnitudes are
normalized by unit reactive powers. In addition, these eigenvalues are related to the
responding phases between pairs of pressure and velocity modes such that a large
eigenvalue denotes a small phase and a small eigenvalue presents a phase close to 90°. Chen
and Ginsberg also concluded that the set of the radiation modes can be divided into either
strong radiators or weak radiators, based on the magnitudes of the eigenvalues such that
a nearly zero eigenvalue is regarded as an inefficient radiator of that mode. One of the
major differences of the modal representation by Chen and Ginsberg from the previous
derivations [2–5] is that the acoustic radiation mode is derived for both surface pressure
and velocity. The radiation mode derived by Chen and Ginsberg is used as the foundation
of the present study.

In this study, the coupling of a heavy acoustic medium with elastic structures under a
mono-frequency vibration is formulated by the radiation modes. The primary feature of
the formulation is to present submerged structural responses in terms of acoustic radiation
characteristics. The coupled system is formulated in terms of acoustic modal co-ordinates
in which the structural equation is condensed onto the normal direction of the wetted
surface with which inertia effects are included. The structure could have internal structural
members. Numerical examples presented are a slender immersed spheroidal thin shell
studied previously [10] as well as attachments of concentrated masses to the shell in order
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to demonstrate variations of acoustic responses due to alterations of structural members.
Also, the radiation patterns for the radiation modes are presented and discussed.

1. RADIATION MODES BASED ON A COMPLEX SURFACE ACOUSTIC POWER

The radiation mode [1] is first summarized based on a complex surface power. The
surface pressure p and normal velocity v under an oscillation frequency v can be
superimposed by radiation pressure modes Cj and radiation velocity modes Fj ,
respectively,

p= s
j

Pj Cj , v= s
j

Vj Fj , (1)

where Pj and Vj are pressure and velocity modal amplitudes respectively. The orthogonal
condition associated with Fj and Cj is

gS

C1 Fm dS= d1m zl2
m +1, (2)

where the surface integral is over the wetted surface of the structure. The subscripts 1 and
m denote various modal states, and lm is the eigenvalue. Applying the above condition
relates the modal amplitudes Pj and Vj to the surface pressure and velocity as

Pj =gS

pFj dS/zl2
j +1, Vj =gS

vCj dS/zl2
j +1. (3)

Moreover, the amplitudes Pj and Vj are related by

Pj =Vj e−iuj, (4)

where i denotes z−1, and the phase uj is defined by the eigenvalue lj such that

uj =tan−11/lj . (5)

Equations (4) and (5) indicate that the response of surface pressure due to a velocity
distribution whose profile conforms to a velocity mode Fj is the corresponding pressure
mode Cj with a phase shift uj , and vice versa for the response caused by a pressure mode.
Equations (1–5) constitute the modal description for acoustic responses on the surface. The
dynamical characteristics are fully characterized by the acoustic modes Fj , Cj and the
eigenvalues lj such that every mode reacts independently. The surface complex acoustic
power P	 , defined as one half of the surface integral of the pressure product of the complex
conjugate of velocity, can be expressed as a modal superposition, i.e.,

P	 =
1
2 gS

pv* dS=
1
2

s
j

=Pj =2(lj − i)=
1
2

s
j

=Vj =2(lj − i). (6)

The negative sign for the reactive power in equation (6) is intentionally used since the phase
of surface pressure leads the normal velocity due to the fact that the surface acoustics is
subject to fluid inertia and radiation damping. Here, the oscillation time factor is e−ivt. The
derivation of equation (6) has applied the orthogonality of equation (2). The equation
indicates that the contribution of the radiated acoustic power from the jth radiation mode
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is quantified by the value lj , and that a mode becomes a weak radiator when its eigenvalue
approaches zero.

2. SUBMERGED STRUCTURAL RESPONSES USING ACOUSTIC RADIATION MODES

The formulation representing a submerged structure under a heavy acoustic medium
loading and external exciting forces can be written as

$Mnn Mni

Min Mii%6ẍn

ẍi7+$Knn Kni

Kin Kii%6xn

xi7=6−NT{P}
0 7+6fn

fi7, (7)

where the discretization of the structure is made such that xn denotes nodal values or
assumed mode expansion coefficients for the normal displacement on the wetted surface,
xi is the displacement tangent to the surface as well as the degrees of freedom of internal
structures, fn and fi are the applied forces corresponding to xn and xi respectively, and {P}
is the pressure modal amplitude expanded by the radiation modes according to equation
(1). The term −NT{P} denotes the acoustic loading where N is a shape factor matrix having
arisen from the discretization functions when one applies a virtual work done by the
surface pressure to the normal displacement, that is,

dWp =−gS 0sj

Pj Cj 1d0sk xn,k fk 1 dS

=−s
j

s
k

Pj dxn,k g g Cj fk dS=−s
j

s
k

Pj dxn,k Njk , (8)

where fk is the discretization function on the normal direction of the wetted surface whose
expansion coefficient or nodal value is xn,k , and d denotes the virtual increment. The Njk

is identified as

Njk =gS

Cj fk dS. (9)

Equation (7) is then condensed to the normal direction xn which can be done by using the
second sub-matrices equation in equation (7) to express xi as a function of xn and fi under
a mono-frequency oscillation at frequency v,

{xi}=(Kii −v2Mii )−1[ fi −(Kin −v2Min ){xn}]. (10)

Equation (10) states that once the displacement xn is known, the tangential and interior
displacements are determined accordingly by xn and fi . Substituting equation (10) into
equation (7) yields the equation for xn in terms of the external forces and pressure modal
amplitudes,

[(Knn −v2Mnn )− (Kni −v2Mni ) (Kii −v2Mii )−1(Kin −v2Min )]{xn}

=−NT{P}−(Kni −v2Mni ) (Kii −v2Mii )−1fi + fn . (11)

The response can be expressed in terms of the radiation modes by further utilizing
equations (1) and (4) to relate pressure modal amplitudes {P} and the normal displacement
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to the velocity modal amplitudes. Since the surface normal displacement can be expanded,
either based on the velocity radiation modes or the discretization functions fk , one has

s
k

xn,k fk = s
m

qm Fm = s
m

qm s
k

Tkm fk = s
k

s
m

Tkm qm fk ,

which leads to the transformation

xn,k = s
m

Tkm qm ,

or in matrix notation,

{xn}=[T]{q}, (12)

where Tkm is the expansion coefficients for the velocity mode Fm in terms of the
discretization functions fk , and qm is the normal displacement modal amplitude, which is
related to Vm by

Vm =−ivqm . (13)

Substituting equation (12) into equation (11) and premultiplying equation (11) by TT leads
to

TTK
 nn T{q}=−TTNT{P}+TTf
 n , (14)

where the matrix K
 and equivalent normal force f
 n are defined as

K
 = (Knn −v2Mnn )− (Kni −v2Mni ) (Kii −v2Mii )−1(Kin −v2Min ),

f
 n =−(Kni −v2Mni ) (Kii −v2Mii )−1fi + fn . (15)

The first term on the right side of equation (14) can be further derived by applying
equations (2), (4), (9), (12), and (13), so that

TTNT{P}= s
m

s
j

Tjk Nmj Pm = s
m

s
j

Tjk 0gS

Cm fj dS1Pm = s
m gS

Cm 0sj

Tjk fj 1 dSPm

= s
m 0gS

Cm Fk dS1Pm = s
m

dmk zl2
k +1Pm

= s
m

dmk zl2
k +1(−iv) e−iumqm = s

m

dmk (lk − i) (−iv)qm , (16)

where the symbol dmk denotes the Kronecker delta symbol indicating that the associated
terms form a diagonal matrix. Thus, equation (14) becomes

[TTK
 T]{q}+[dmk (lk − i) (−iv)]{q}=TTf
 n , (17)

which is the governing equation for the submerged structure using the radiation modal
amplitudes {q} as variables. The first term denotes the condensed dynamic stiffness in the
situation of the constant oscillation frequency v using velocity radiation modes as modal
co-ordinates, and the second diagonal term denotes the acoustic loading due to the
radiation modes. Recall equation (6) that the factor (lk − i) represents the complex modal
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power of a unit velocity modal amplitude. Thus, equation (17) shows that the acoustic
loading due to the radiation modes is proportional to the corresponding complex modal
powers. As expected from the physical phenomenon, the term associated with lk in
equation (17) is an imaginary coefficient, which denotes damping effects to the structure.
Meanwhile, the term associated with the reactive power provides restoring effects, which
do not dissipate energy. A comparison of the sign of the mass effects in the structural
equation shows that the negative reactive power term indicates inertia effects to the
structure.

3. COUPLING OF STRONG AND WEAK ACOUSTIC RADIATION MODES FOR
SUBMERGED ELASTIC STRUCTURES

Equation (17) provides a further insight into the interactions between strong radiation
modes and weak radiation modes in relation to the structural properties. This interaction
becomes clear when equation (17) is partitioned on the basis of the modal attributes of
efficient and inefficient radiators,

$TT
e K
 Te + dkm (lk − i) (−iv)

TT
i K
 Te

TT
e K
 Ti

TT
i K
 Ti + dkm (−i) (− iv)%6qe

qi7= {TTf
 n}, (18)

where qe and qi are the modal amplitudes for efficient and inefficient radiators, respectively,
and the matrices Te and Ti are the partitioned matrices of the transformation matrix T
based on efficient or inefficient radiators. Here, the eigenvalues in the above equation
associated with inefficient radiators have been set to zero. The equation indicates that the
interactions for the modes of strong and weak radiators occur at the coupling stiffnesses
TT

e K
 Ti and TT
i K
 Te . The influence of weak radiators {qi} to strong radiators {qe} depends

on the coupling stiffnesses and external forces having the components of the inefficient
radiation modes. A numerical example to demonstrate the coupling effect of the weakly
radiating to strongly radiating modes will be provided later. Note that equation (17) is a
symmetric formulation.

Once {qe} and {qi} are solved, surface responses are obtained by combining equations
(1), (4), and (13), and the complex power is calculated using equation (6). The real part
of the complex power is the radiated power. The normal displacement {xn} of the structure
follows the transformation of equation (12), while the corresponding {xi} is computed by
equation (10) accordingly. The field pressure at a field point x is obtained by equations
(1), (4) and the Helmholtz integral formula

p(x)=gS $p(y)
1G(x, y)

1n
− r0 ivvn (y)G(x, y)% dSy

=gS $0sj

Pj Cj (y)1 1G(x, y)
1n

− r0 iv0sj

Vj Fj (y)1G(x, y)% dSy

=gS $0sj

Vj e−iujCj (y)1 1G(x, y)
1n

− r0 iv0sj

Vj Fj (y)1G(x, y)% dSy

= s
j

Vj gS $e−iujCj (y)
1G(x, y)

1n
− r0 ivFj (y)G(x, y)% dSy , (19)
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where G is a free space Green’s function having a factor 1/(4pR) exp(ikR), in which k is
the wave number, 1G/1n is the normal derivative of G, r0 is the fluid density, and y denotes
the source point on the wetted surface. The integral of the last expression is identified as
the field pressure caused by the jth acoustic mode of which the velocity is Fj and the
pressure is Cj e−iuj. Equation (19) is a modal-type representation for the field pressure
response where Vj is related to the solved normal displacement modal amplitude qj by
equation (13).

The radiation pattern is obtained by allowing the point x in equation (19) to approach
a large distance R and factoring out the simple source factor e−ikR/R from the equation,
where R is the distance of a point at the far field to a reference origin point of the body.
Because the pressure waves due to the weak radiator modes are confined to the near-field
of the surface, equation (19) can be simplified by only accounting the contributions of the
strong radiation modes. The modal radiation patterns of the radiation modes are examined
in the following.

4. RADIATION PATTERNS FOR RADIATION MODES

Radiation patterns for radiation modes were found first in literature [4] for which the
modes were derived on the basis of singular value decomposition applied to the real part
of the impedance of the surface acoustic loading. A finite rigid cylinder was used as an
example to demonstrate that the patterns for strong radiator modes have directional or
beaming characteristics, and that the patterns for weak radiator modes vanish in the far
field. A cut-off wave number exists for a mode whose phase speed is equal to the sound
speed of the acoustic medium. A sudden drop of radiation efficiencies, e.g., singular values,
versus mode numbers was observed. A similar situation occurs with the radiation modes
presently used. Figures 1 and 2 are the plots of pressure and velocity radiation modes for
the first eight modes, which are copied from the previous study [1]. The arc length is
non-dimensionalized by the total arc length between the two apexes of the spheroid. The
geometry is a slender spheroidal body whose aspect ratio of major radius to minor radius
is four under a non-dimensional oscillation frequency ka=1·8, where k=v/C0, and C0

is the sound speed. The quantities presented are non-dimensionalized by the minor radius
a for spatial quantities, and by r0 C2

0 for pressure where r0 is the fluid density. The
corresponding eigenvalues lj are listed in Table 1. The radiation patterns are shown in
Figures 3 and 4, which are computed by the integral of the last expression of equation
(19). The orientations of 0° and 180° are along the apex directions, and 90° is normal to
the direction of the surface around the equator. The patterns present directional features
in which the far field pressures move from 90° toward 0° and 180° gradually when the mode
numbers increase from the first to the sixth. Beyond the seventh mode, the patterns start
to shrink to smaller values, whilst the corresponding eigenvalues abruptly drop to small
values. A similar phenomenon has also been observed in the literature [4] for the case of
a finite rigid cylinder.

These manifestations can be accounted for by the trace velocity matching principle [11].
The principle states that a supersonic wave travelling on a flat surface, whose speed Cw

is greater than the sound speed C0, generates acoustic waves into the acoustic medium.
The propagating direction is the direction in which the phase velocity of the acoustic wave
along the surface equals the supersonic wave speed. A subsonic wave, whose speed is less
than the sound speed, produces an evanescent pressure field that does not radiate energy
into the far field. Figure 5 shows the relationship between the supersonic wave speed Cw

and the sound speed C0. The matching principle, although valid only for flat surfaces,
is still qualitatively applicable to a curved surface when the surfaces are relatively flat in
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Figure 1. (a) Acoustic velocity and (b) pressure radiation modes for the first four modes at ka=1·8. Key:
—W—, mode 1; —Q—, mode 2; —R—, mode 3; —T—, mode 4.

some regions. The velocity profiles of the velocity modes depicted in Figures 1 and 2 can
be decomposed into wave number components. The simple variations of the profiles denote
that the wave number components are narrow bands. Each wave component is responsible
for a principal radiation direction determined by the matching principle. The small wave
number, which corresponds to a large travelling speed, generates propagating waves in a
direction nearer perpendicular to the surface (see Figure 5). The large wave number, but
still a supersonic wave, causes waves to propagate in a direction nearer to parallel with
the surface. As the wave number further increases, the travelling speed on the surface is
less than the sound speed which leads to the waves becoming evanescent so that the
pressure decays rapidly from the surface. The sudden jump of the eigenvalues in Table 1
indicates the occurrence of a cut-off wave number that divides the velocity profiles of the
modes into supersonic and subsonic waves. As a result of such directional features, the
far field pressure essentially consists of contributions by a single or two strongly radiating
modes, rather than the overall modes which radiate efficiently.

The coupled system equation of equation (17), the modal representation of surface
quantities of equation (1), and field pressure superposed by the radiation modes of
equation (19), constitute a modal-type formulation for acoustic–structural interactions.
Numerical examples are provided in the next section.
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Figure 2. (a) Acoustic velocity and (b) pressure radiation modes for the fifth to eighth modes at ka=1·8. Key:
—W—, mode 5; —Q—, mode 6; —R—, mode 7; —T—, mode 8.

5. NUMERICAL EXAMPLES

The present formulation is demonstrated using a constant thickness spheroidal shell as
a primary model [10], together with attachments of concentrated masses to the shell. The
former is to illustrate the response of submerged elastic structures by the velocity modal
co-ordinates. The latter addresses variations of acoustic field when the structural properties
are varied. The parameters selected for the shell are identical with those in reference [10]:
the ratio of dilatation wave speed of the shell’s material to acoustic wave speed of the
medium, cd /c0 =3·367, the density ratio between the shell and fluid, rs /r0 =7·9, the
thickness ratio of the shell to the minor axis radius, h/a=0·03, and the non-dimensional
exciting frequency ka=1·8.

The shell equation is based on classical linear bending thin shell theorems, formulated
in axisymmetric response using Hamilton’s principles in conjunction with a Raleigh–Ritz

T 1

Eigenvalue lj for a prolate spheroid of an aspect ratio 4 at ka=1·8

Mode number 1 2 3 4 5 6 7 8

Eigenvalue 3·34 2·80 2·18 1·50 0·895 0·361 0·090 0·01390
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Figure 3. Radiation patterns due to the first four acoustic radiation modes.

type assumed modes expansion for the normal displacement and tangential displacement.
The derivation can be found in references [10, 12]. Substituting the radiation modal modes
into equation (17) yields the equation of the coupled system in terms of radiation modal
amplitudes {qi}. The external force is a unit uniform surface force non-dimensionalized
by a factor of r0 c2

0 . The velocity modal amplitudes, which relate the displacement modal
amplitudes by equation (13), are listed in the second column of Table 2 with the
corresponding external modal forces f
 i tabulated in the third column. The radiated power
is simply summed up algebraically over each modal power computed by equation (6). The
radiated powers due to the uniform surface force are listed in the fourth column. This
table clearly shows that the response is attributed to the first radiation mode.
Correspondingly, it is not surprising as displayed in Figure 6 that the far field pressure
occupies the region in the directions of 90° and 270° as one realizes that the radiation
pattern of the first mode is mainly distributed in that region.

As another example in contrast to the uniform force, the external force is replaced by
a unit concentrated point force, non-dimensionalized by a factor r0 c2

0 a2, exerted at the
apex located at 0°. The results are listed in Table 2 in which some of the weakly radiating
modes have significant amplitude values shown in the fifth column. The occurrence of such
a situation is due to the high order modal force components for the point force listed in
the sixth column. As expected, the radiation pattern for the point force depicted in Figure 6
indicates that the pressure distribution in the regions of 90° and 180° becomes much
smaller, while it is enhanced in the direction along the point force. Although there are
obvious amplitudes for modes above the sixth mode, these modes contribute very little to
far fields because of their inefficient radiation. The present modal-type formulation
provides a direct connection for the surface responses to acoustic radiation characteristics.
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Figure 4. Radiation patterns due to the fifth to eighth acoustic radiation modes.

The amplitudes for the case of the point force do not approach zero for high order weak
radiator modes, which is contrary to natural mode expansions in the area of structural
dynamics. Such a situation will be interpreted in the next section.

The next example is a study of various concentrated masses attached to the shell under
a uniform surface exciting force, in which the effects of structural alterations in relation
to acoustic far fields are demonstrated. Two situations are calculated: a uniformly
distributed line mass along the equator where the amount of mass is one-half of a spherical
shell whose radius is the minor radius of the spheroidal shell with the identical thickness;
two equal masses attached at the two apexes with each having one-half of the former added
mass on the equator. The surface normal displacements, magnitudes of modal velocity
amplitudes and far field radiation patterns are presented in Figures 7–9 respectively, where
the results of the uniform thickness shell are included for comparison. Only symmetric
modes whose profiles are symmetric about the equator are taken into account because the

Figure 5. The relationship between supersonic wave speed Cw and sound speed C0.
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T 2

Modal displacement amplitudes, modal forces, and radiated modal powers for a uniform
surface force and a point force at ka=1·8

Uniform surface force Concentrated force
ZXXXXXXXCXXXXXXXV ZXXXXXXXCXXXXXXXV

Modal Modal
Mode Velocity radiated Velocity radiated

number ampl. Modal force power ampl. Modal force power

1 1·97352 −0·30395 6·45156 0·29417 −0·00148 0.14335
2 0·00000 0·00000 0·00000 0·34084 −0·00817 0·16217
3 0·44546 −0·16620 0·21635 0·62235 −0·03087 0·42229
4 0·00000 0·00000 0·00000 0·03415 −0·08139 0·00088
5 0·54108 −0·07790 0·13416 0·95363 −0·14477 0·41673
6 0·00000 0·00000 0·00000 0·75994 −0·20064 0·10375
7 0·55724 0·01629 0·01389 0·87306 0·23693 0·03409
8 0·00000 0·00000 0·00000 0·33841 −0·31911 0·00076
9 0·28540 −0·00122 0·00005 0·40978 0·22727 0·00010

10 0·00000 0·00000 0·00000 0·18037 −0·24410 0·00000
11 0·11926 0·00004 0·00000 0·17389 −0·31670 0·00000
12 0·00000 0·00000 0·00000 0·08648 −0·36066 0·00000
13 0·00000 0·00000 0·00000 0·04450 −0·00336 0·00000
14 0·00079 0·00000 0·00000 0·01211 0·22428 0·00000
15 0·00000 0·00000 0·00000 0·08945 −0·00489 0·00000
16 0·03152 0·00000 0·00000 0·06110 −0·15003 0.00000
17 0·02762 0·00000 0·00000 0·07258 0·14777 0·00000
18 0·00000 0·00000 0·00000 0·10256 −0·00486 0·00000
19 0·01059 0·00000 0·00000 0·11868 0·09733 0·00000
20 0·00000 0·00000 0·00000 0·23868 −1·52307 0·00000
21 0·05219 −0·00086 0·00000 0·16547 −1·65904 0·00001

Total – – 6·81601 – – 1·28410
radiated
power

Figure 6. Radiation patterns of a constant thickness shell for a point and a uniform excitating forces at
ka=1·8. Key: —R—, point force; —E—, uniform loading.
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Figure 7. Surface displacements under a uniform exciting force for a constant thickness shell as well as with
various attached masses at ka=1·8. Key: —E—, uniform thickness; —Q—, added masses at apexes; —R—,
added masses at equator.

responses are symmetric about the equator. Evaluating the radiation characteristics from
the plots of surface responses, such as in Figure 7, is relatively difficult. However, the modal
amplitudes plotted in Figure 8 clearly reveal radiation situations and their connections to
radiation patterns. The modal amplitude distributions for the case of two concentrated

Figure 8. Modal velocity amplitudes under a uniform exciting force for a constant thickness shell as well as
with various attached masses at ka=1·8. Key: ––E––, uniform thickness; —W—, added mass at apexes; —R—,
added mass at equator.
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Figure 9. Radiation patterns under a uniform exciting force for a constant thickness shell as well as various
attached masses at ka=1·8. Key: —E—, uniform thickness; —W—, added mass at apexes; —Q—, added mass
at equator.

masses at the apexes are essentially the same as the case of uniform thickness except there
are minor differences at the second and third modes, which shows that the radiation
patterns of these two are nearly identical. In contrast to the case of two concentrated
masses, the case of mass equally distributed at the equator has more high order weak
radiator modes excited. The presence of the second and third modal amplitudes (which
are numbered as the third and fifth modes for full modal numbers) yields the occurrence
of the relative larger side lobes on the axisymmetric axis direction. The modes beyond the
third mode, although presenting obvious amplitudes, do not contribute to the side lobes
because the associated eigenvalues are small as listed in Table 1.

The surface complex powers calculated from equation (6) for the uniform thickness,
added mass on the equator, and two added masses at the apexes are (6·78− i2·36),
(6·59− i3·66) , and (7·07− i2·49), respectively. The increased amount of radiated energy
for the case of two concentrated masses is due to the increased modal acoustic energies
of the second and third modes. The decreased radiated energy for the distributed mass
around the equator is the decreased power of the first mode and relatively small increased
powers of the second and third modes. Recall from equation (17) that a reactive power
represents inertia effects to the structures. If the uniform thickness shell is taken as a
reference, the increased amplitudes of weakly radiating modes for the distributed mass
attached at the equator induce more inertia effects to the structure, whereas the added
masses on the apexes induce less inertia effects because the modal amplitudes of high order
modes are essentially the same as the uniform shell.

6. CONVERGENCE OF MODAL AMPLITUDES

The convergence of modal amplitudes versus the number of employed radiation modes
used is examined by plotting the modal amplitudes versus mode numbers. Figure 10 shows
the modal amplitudes for the point force where values are only meaningful at discrete
integer mode numbers. The plot shows that the amplitudes do not approach unique values
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for some high order modes, nor do they approach zero. This phenomenon can be
interpreted from the properties of eigensolutions when the eigenvalues remain close to each
other. It has been shown in reference [13] that for the situation of two eigenvalues staying
in close proximity, the eigenfunctions exhibit high sensitivity to a perturbation of the
eigensystem. The analysis can be extended to a cluster of close eigenvalues qualitatively.
A perturbed eigenfunction f'i can be represented by linear combinations of unperturbed
eigenfunctions fj whose eigenvalues remain close to each other,

f'i = s
n

j=1

cij fj +O(o), i=1, 2, . . . n, (20)

where cij is the combination coefficient which is strongly dependent on the small
perturbation quantity indicated by o, n is the number of the eigenvalues staying in the
cluster, O(o) and is a small quantity representing the contributions due to eigenfunctions
whose eigenvalues are well separated from the cluster. Here, the eigenfunctions f'i and fj

are normalized with some scales, which can be a unit reactive power in the present case.
Because the high order weak radiating modes have nearly zero eigenvalues, implying that
the eigenvalues remain close to one another, the corresponding radiating modes follow
equation (20) and have strong dependence on a small disturbance. The disturbance could
be any small alterations, including numerical discretization and numerical truncation
errors. Various numbers of modes used denote different small alternations which lead to
various modal amplitudes for high order modes as depicted in Figure 10. Therefore,
numerically determining an ‘‘exact’’ high order radiation mode is nearly impossible.
However, this situation does not pose any difficulty in applications since a numerically
computed high order mode is the linear combination of the ‘‘exact’’ modes whose
eigenvalues are nearly zero. Thus, the numerically computed modes still carry the acoustic
modal characteristics of inefficient radiation. Therefore, the convergence is assessed by the

Figure 10. Velocity modal amplitudes of a constant thickness shell subject to a point force for various numbers
of modes used at ka=1·8. Key: —e—, 11 acoustic modes; —Q—, 20 acoustic modes; —(—, 25 acoustic modes;
—+—, 35 acoustic modes.
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convergence of the modal amplitudes whose eigenvalues are not zero, which are strong
radiating modes and whose eigenvalues, although small, are not zero. In equation (18),
the convergence of efficient radiator amplitudes {qe} is achieved only when {qi} has
sufficient degrees of freedom to represent the structural responses, because {qe} and {qi}
are coupled by the off-diagonal matrices. Moreover, the reactive power due to the weakly
radiating modes is shown to converge when sufficient modes produce convergent results.
Figure 10 shows that the use of 20, 25, and 35 modes yields converged answers, whereas
11 modes do not. The reactive power in Figure 10 contributed by the modes beyond the
tenth mode are −0·11, −0·10, and −0·091 for 20, 25, and 35 modes used, respectively.
The example shows that 20 modes are sufficient for convergence in the case of the point
force.

CONCLUSIONS

A formulation has been presented in this study for a heavy acoustic medium interacting
with elastic structures using recently developed acoustic radiation modes. The
representation of the structures is condensed to the degree of freedom on the normal
direction of the wetted surface with inertia effects included under a mono-frequency
oscillation. A coupled equation is derived by coupling the radiation modes to the
condensed equation. Transforming the coupled equation into the radiation modal
co-ordinates leads to the equation becoming an in-vacuo dynamic stiffness plus a diagonal
term due to the acoustic loading. Each element of the diagonal terms has a one-to-one
correspondence to surface complex modal powers for which the real part of the power
represents the damping effects, and the imaginary part denotes inertia effects to the
structure. The solved modal amplitudes of the equation lead to the surface response,
structural displacements, and field pressures. The significant feature of the formulation is
that the response of the coupled system is directly related to acoustic radiations through
the acoustic radiation modes. A slender spheroidal body is used to show the modal
radiation patterns such that the pressure at a far field position is mainly caused by a single
or two modes emitted from the surface.

The present developments were demonstrated by using a submerged spheroidal shell
with various attached masses under a point and uniform alternative forces. The case of
a constant thickness shell under the uniform applying force was studied by using the
present formulation, indicating that the first radiation mode was the primary one for the
system response. A correlation was also studied between modal amplitudes and directivity
of radiation patterns. In addition, the case of a point force acting on one apex, in contrast
to the uniform force, was presented to display the excitation of weak radiator modes. Also,
the convergence of the modal amplitudes versus numbers of modes was examined.
Numerical results showed that the amplitudes of strongly radiating modes and low order
weakly radiating modes converged when sufficient modes were used. Meanwhile, the
amplitudes of high order modes, whose eigenvalues are nearly zero, did not approach finite
values, nor null values. This numerical phenomenon is due to the nature of eigensolutions
when the eigenvalues become close to one another such that the eigenfunctions are highly
dependent on tiny perturbations applied to the eigensystem. The perturbations can be
numerical errors induced in discretization and computation. However, this situation does
not affect the use of the modes because the numerical computed weak radiator modes,
whose eigenvalues are nearly zero, are linear combinations of the modes without numerical
approximations.

A numerical study was also performed for a uniform loading under concentrated masses
attached at different locations to the spheroidal shell. The study showed the variations of
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acoustic radiation due to alterations of structural components. The numerical results
showed that the attached mass at the equatorial position induced more weakly radiating
modes to be excited, but slightly changed the modal amplitudes of strongly radiating
modes. This alteration in modal amplitudes results in the radiation pattern exhibiting more
pressure in the direction of the symmetric axis of the spheroidal body. When masses were
added at the apexes, the modal amplitudes produced are slightly different from those of
the uniform thickness shell, of that the two radiation patterns are nearly identical.
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